Original article

 AbdelshafyReceived: ${ }^{〔}{ }^{9}$ February Y.ヶ.
Revised: 10 June r. r.
Accepted: $r \cdot$ June $r \cdot r \cdot$

Abstract:

Background:

Aim:

 patients with OMD.
r. Patients and methods:

Role of multifocal electroretinogram in prediction of visual prognosis in patients with occult macular dystrophy.

Running title: mf-ERG in occult macular dystrophy, Abdelshafy and

Occult macular dystrophy (OMD) is a rare hereditary macular dystrophy characterized by severe bilateral progressive loss of central vision with normal fundus appearance and normal fundus fluorescein angiography (FFA).

The aim of the present study was to assess the correlation between the multifocal electroretinogram (mf-ERG) parameters and best corrected visual acuity (BCVA) in

Twenty eyes of 1• patients with OMD and twenty eyes of 1• age and gender matched normal subjects were included in this study. Full ophthalmic examination, FFA, optical
coherence tomography（OCT），full field electroretinogram（ERG）and mf－ERG were performed for all participants．The average amplitude density of P ）wave，amplitude and implicit time of P^{\prime} and N^{\prime} waves were recorded in the five concentric hexagon rings． The correlation between these mf－ERG parameters and BCVA（LogMAR）were analyzed．

Results：

There were no statistically significant differences in age，gender and refraction between the studied groups（ $\mathrm{p}=\cdot .0 \varepsilon, 1 . \cdot$ and $\cdot . \wedge r$ ，respectively）．Mf－ERG parameters in OMD patients showed significant central depression with less affection of peripheral rings．The average amplitude density of P^{\prime} wave，amplitude of P^{\prime} and N^{\prime} waves were significantly reduced in the central rings（ring $1,\left\ulcorner\right.$ and ${ }^{r}$ ），with less impairment in the paracentral $\operatorname{areas}\left(\right.$ ring ε and ${ }^{\circ}$ ）．The implicit time of P^{\prime} andN ${ }^{\prime}$ waves were significantly delayed across the central rings in the OMD patients．The BCVA（LogMAR）was significantly negatively correlated with the amplitude of P^{\prime} and N^{\prime} waves $(\mathrm{p} \leq \cdot . \cdot \cdot$ ）．The BCVA （LogMAR）was significantly positively correlated with the implicit time of P^{\prime} and N^{\prime} waves（ $\mathrm{p} \leq \bullet \cdots$ ）．Multiple regression analysis demonstrated that the amplitude and latency of P^{\prime} andN ${ }^{\prime}$ waves in the central rings（ $\$ and ${ }^{「}$ ）were the most important determinants for BCVA．

Conclusion：

Mf－ERG has a key role in detection of OMD and can be considered as a valuable objective test for detection of central／macular dysfunction．The amplitude and latency of
P^{\prime} andN ${ }^{\prime}$ waves in ring $\$ and ${ }^{r}$ may be used as biomarkers for prediction of visual prognosis in these patients．

Keywords：

Multifocal electroretinogram，visual acuity，occult macular dystrophy，optical coherence tomography．

Introduction：

Occult macular dystrophy（OMD）is a rare hereditary macular dystrophy（ $1, \Upsilon$ ）．It is characterized by severe bilateral progressive loss of central vision with no visible abnormalities in the fundus and normal fundus fluorescein angiography $(\Gamma-0)$ ．It was first described by Miyake in 19 入9（ ${ }^{7}$ ）．Both scotopic（rod）and photopic（cone）components of the conventional full field electroretinogram（ERG）are essentially normal in OMD patients．However，the focal macular electroretinogram and multifocal electroretinogram（mf－ERG）show marked reduction of amplitude which indicate that the dysfunction of the retina is confined to the central macula rather than the retinal periphery $\left({ }^{\vee}, \wedge\right)$. OMD is often misdiagnosed due to the normal appearance of both fundus and fluorescein angiography which makes the diagnosis of such patients a challenging situation（ ${ }^{(}$）．

With advancement of spectral domain optical coherence tomography（SD－OCT），eyes with OMD were found to have structural changes even in absence of any macular abnormalities on fundus examination（ ））．SD－OCT may show disruption of the photoreceptor and／or outer nuclear layers，lost ellipsoid zone，loss of the inner segment－ outer segment（IS－OS）junction and reduction of the foveal thickness．However，some
cases were reported to have minimal to subtle changes in OCT in spite of macular dysfunction（9－11）．

Multifocal ERG（mf－ERG）provides a topographic measurement of the macular function， centered on the posterior retina $\left({ }^{(} \cdot{ }^{\circ}-\Gamma \cdot{ }^{\circ}\right)$ on either side of fixation，by recording many local electroretinogram responses（ 7 ）or $1 \cdot \Psi$ ）from the cone－driven photoreceptor layer under photopic condition（ \mid Y， 1 T $)$ ．

OMD has been known to be caused by mutations in the retinitis pigmentosa＇－like ${ }^{\prime}\left(\mathrm{RP}^{\prime} \mathrm{L}^{\prime}\right)$ gene．The most common mode of inheritance is autosomal dominant（AD）．

The aim of the present study was to highlight the crucial role of mf－ERG in diagnosis of OMD and to delineate its role in prediction of visual prognosis in these patients by studying the correlation between the mf－ERG parameters and best corrected visual acuity （BCVA）．

Patients and methods：

Forty eyes of $\uparrow \cdot$ patients were included in this cross－sectional comparative study，which was conducted between January r． $1 \wedge$ and February $r \cdot r \cdot$ ．All participants were recruited from the Outpatient Clinics of Benha University Hospital．After approval of the Local Ethical Committee of the Faculty of Medicine，Benha University，all participants or their
legal guardians signed a written informed consent with the requirements of the Declaration of Helsinki to participate in the study and for publication of data before enrollment in the study.

Participants were divided into ${ }^{r}$ groups: twenty eyes of 1 • patients diagnosed with occult macular dystrophy; ${ }^{7}$ males and \leqslant females, ranging in age from ${ }^{1} \leqslant$ to ${ }^{〔 \wedge}$ years(OMD group) and twenty eyes of $1 \cdot$ age and gender matched normal subjects; ${ }^{7}$ males and $\mathfrak{\varepsilon}$ females, ranging in age from $\$: to $r \cdot$ years (control group).OMD was diagnosed according to the following findings: presence of bilateral progressive loss of central vision, no visible abnormality on fundus examination, normal fundus fluorescein angiography, normal scotopic and photopic components of the full field ERG with marked reduction of the focal macular cone ERG. Six patients reported the presence of visual problems in other family members, while the other four patients had no positive family history. The healthy volunteers had BCVA better than $7 / 9$, with no associated ocular diseases.

All participants had full ophthalmologic examination including slit-lamp examination, refraction, best corrected visual acuity (BCVA) using Snellen's chart(expressed as LogMAR), intraocular pressure (IOP) measurement by applanation tonometry, dilated fundus examination, fundus fluorescein angiography (FFA),optical coherence tomography (OCT),full field electroretinogram (ERG) and multifocal electroretinogram (mf-ERG).

Spectral-domain (SD)-OCT scans (Topcon ${ }^{〔}$ D OCT model $\upharpoonright \cdots$ FA version $\wedge .{ }^{\digamma} \cdot$, Topcon Corporation Company, Tokyo, Japan) was used for analysis of macular morphology

Full field ERG and mf-ERG were recorded after pupil dilatation, using RETI-port/scan Y_{1} (Roland Consult, Brandenburg, Germany) and following the International Society for Clinical Electrophysiology of Vision (ISCEV) standards (1 r).

Mf-ERG was recorded using HK Loop electrodes (Hawlina - Konec electrode , HK Med, Avantia, Ljubljana, Slovenia)which were installed into the lower fornix, with the reference skin electrodes attached on the skin near the orbital rim temporally of each eye and ground skin electrodes attached on the central part of the forehead.

The mf-ERG stimulus consisted of ${ }^{7}$) hexagons, covering a visual field of $\Gamma .{ }^{\circ}$ and was presented on a monitor (at a viewing distance of $r \mathrm{rcm}_{\mathrm{cm}}$ from the patient). Each hexagon was alternated between light and dark. Each hexagon was stimulated with the same msequence (frame rate: ${ }^{\vee 0} \mathrm{~Hz}$, hexagon luminance: ${ }^{r} \cdot \mathrm{~cd} / \mathrm{m}^{-r}$ in the lighted state and <1 $\mathrm{cd} / \mathrm{m}^{r}$ in the dark state and the contrast between white and black hexagons was $9 \uparrow \%$). Each recording session was subdivided into \wedge recording cycles.

The following mf－ERG parameters were recorded in the five concentric hexagon rings： the average amplitude density of P^{\prime} wave\｛ Amp． $\left.\mathrm{P}^{\prime}\left(\mathrm{nV} / \mathrm{deg}^{\Upsilon}\right)\right\}$ ，amplitude of P^{\prime} wave $\{$ Amp． $\mathrm{P}(\mathrm{mv})\}$, amplitude of N^{\prime} wave $\left\{\right.$ Amp． N （mv）\}, implicit time of $\mathrm{N}^{\text {’ }}$ wave $\left\{\operatorname{PeT} . \mathrm{N}^{\}(\mathrm{~ms})\right\}$ and implicit time of $\mathrm{P} \backslash$ wave $\left\{\mathrm{PeT} . \mathrm{P}^{\}(\mathrm{~ms})\right\}$ ．The correlation between these mf－ERG parameters and visual acuity（BCVA， logMAR ）were analyzed．

Statistical analysis：

The collected data were tabulated and analyzed using SPSS（the Statistical Package For Social Sciences software，version 17；SPSS Inc．，Chicago，Illinois，USA）．Categorical data were presented as number and percentages，and analyzed by Fisher＇s exact test （FET）．Quantitative data were tested for normality using Shapiro－Wilks test assuming normality at $\mathrm{p}>\cdot . \cdot 0$ ．Non parametric variables were presented as median and inter－ quartile range（IQR），and were analyzed by Mann Whitney U test $\left(Z_{M w U}\right)$ for r independent groups．Spearman＇s correlation coefficient（rho）was used to assess non－ parametric correlations．Significant factors of correlation were entered through stepwise multiple linear regression analysis to detect the significant predictors of $\mathrm{BCVA} . \mathrm{P} \leq \cdot . \cdot \circ$ was considered significant and $\mathrm{p} \leq \cdots \cdots$ was considered highly significant．

Results：

Twenty eyes of 1 • patients diagnosed with occult macular dystrophy；${ }^{7}$ males（ $7 . \%$ ）and $\varepsilon(\varepsilon \cdot \%)$ females，with a mean age of $19 . \upharpoonright \pm\urcorner \cdot$ years（OMD group）and twenty eyes of 1 •
age and gender matched normal subjects； $7(7 \cdot \%$ ）males and $\varepsilon(\varepsilon \cdot \%)$ females，with a mean age of 19.7 ± 7.1 years（control group）were included in the study．There were no statistically significant differences in age，gender and refraction between the studied

Table（ 1 ）：Age and gender of the studied groups

Variable		$\begin{gathered} \begin{array}{c} \text { OMD group } \\ (\mathbf{n}=1 \cdot) \end{array} \\ \hline 19 . ケ \pm \uparrow . \\ (1 \varepsilon-广 \wedge) \\ 10 . \cdot(1 \leqslant . \wedge-r 0) \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Control group } \\ (\mathbf{n}=1 \cdot) \end{array} \\ \hline 19.7 \pm 7.1 \\ (1 \varepsilon-r \cdot) \\ 17 . \cdot(10.0-Y \Sigma) \\ \hline \end{gathered}$	Test of significa$\begin{gathered} \text { nce } \\ \hline \mathbf{Z}_{\mathbf{M W U}} \\ =\cdot .71 \end{gathered}$	$\mathbf{p}$$\because .0 \varepsilon$
Age（ys）	Mean \pm SD Range median（IQR）				
Gender （No，\％）	Male	7 （7．．\％）	$7(7 . . \%)$	FET	1．＇
	Female	\＆（ $\llcorner\cdot . \%$ ）	$\varepsilon(\varepsilon \cdot . \%)$		

$\mathrm{Z}_{\text {MWU }}:$ Mann Whitney U test，FET：Fisher＇s Exact test，OMD：occult macular dystrophy

All patients with OMD had normal fundus picture and normal FFA．The OCT in OMD patients showed significant thinning of the central macular thickness（CMT）in comparison to the control group（ $\mathrm{p}<\cdot . \cdots$ ），Table ${ }^{r}$ ）．The OCT findings in OMD patients varied between disruption of the photoreceptor／outer nuclear layers with lost ellipsoid zone and foveal cavitation in ${ }^{1 r} \operatorname{eyes}(7 \cdot \%$ ），minimal central loss of the IS－OS junction and reduction of the foveal thickness in ${ }^{7}$ eyes（ $\Gamma \cdot \%$ ），while $\left.{ }^{r} \operatorname{eyes}() \cdot \%\right)$ were reported to have no changes in the OCT（Fig．${ }^{1}$ ）．

\wedge

Figure（ 1 ）：Fundus picture and fundus fluorescein angiography of patient with occult macular dystrophy：no visible abnormalities ，The optical coherence tomography of both eyes show lost ellipsoid zone，disruption of the photoreceptor Is／Os layer and foveal cavitation（gap in subfoveal outer segment layer not associated with diffuse retinal thinning）

Table（ \upharpoonright ）：Comparing the studied eyes regarding the studied parameters．

Variable		OMD eyes（ $\mathrm{n}=\mathrm{r}^{\bullet} \cdot$ ）	Normal eyes（ $\mathrm{n}=\stackrel{r}{ }$ ．）	$\mathbf{Z}_{\text {MWU }}$	P
		Median（IQR）	Median（IQR）		
SE				－Yr	$\cdot{ }^{\text {Ar }}$
CMT		109 （10r－170）	Yrre（YO－rı0）	0.54	$\begin{gathered} \hline \stackrel{\bullet \cdots}{ }+{ }^{(H S)} \\ \hline \end{gathered}$
BCVA（LogMAR）		$\cdot . \wedge\left(\cdot .{ }^{\vee}-\cdot . \wedge\right)$	$\because \cdot(\cdot-\cdot$.	0.0 V	$\begin{gathered} \langle\because \cdots \\ (\text { HS }) \\ \hline \end{gathered}$
	Ring ${ }^{\prime}$		7 7．1（0入．Y－V7．•）	0.61	$\begin{gathered} \langle\because \cdot \\ (\mathbf{H S}) \end{gathered}$
	Ring ${ }^{\text {r }}$	7．Yร（0．7－V．VY）		0.51	$\begin{gathered} \because \because \cdot 1 \\ (\mathbf{H S}) \end{gathered}$
	Ring ${ }^{\mu}$		＇V．Y（17．r－\＾．Y）	0.1	$\begin{gathered} \hline \stackrel{.}{ }+\cdots \\ (\text { HS }) \\ \hline \end{gathered}$
	Ring			！．＊	$\begin{gathered} <\cdots \cdots \\ (\mathbf{H S}) \end{gathered}$
	Ring ${ }^{\circ}$	$0.100(0.1-V .9)$		r．．r	\cdots ．．．r（S）
高合	Ring ${ }^{\prime}$		＇．11（1．－－1．r）	0.61	$\begin{gathered} <\because \cdots) \\ (\mathbf{H S}) \end{gathered}$
	Ring ${ }^{\text {r }}$	$\bullet .17(\cdot .15-. .19)$		0.51	$\begin{gathered} \because . \cdot 1 \\ (\mathbf{H S}) \\ \hline \end{gathered}$
	Ring ${ }^{\mu}$		$\bullet .71(\cdot .0 \wedge-\cdot .70)$	0.19	$\begin{gathered} <\because \cdot 1 \\ (\mathbf{H S}) \end{gathered}$
	Ring		$\cdot .0 \cdot\left(\cdot . \sum \sum-\bigcirc .0 \wedge\right)$	¢．11	$\begin{gathered} <. \cdots 1 \\ (\mathbf{H S}) \\ \hline \end{gathered}$
	Ring ${ }^{\circ}$	$\left.\cdot . \Gamma \varepsilon_{(} \cdot \mu \varepsilon_{-} \cdot .0 ヶ\right)$	$\cdot .0 \cdot(\cdot .51-.099)$	r．1V	$\bullet \cdot{ }^{\mu}(\mathbf{S})$
	Ring ${ }^{\prime}$	$\cdot .1 \wedge(\cdot)-.\cdot . Y) ~$		¢．V7	$\begin{gathered} \because . \cdots 1 \\ (\mathbf{H S}) \end{gathered}$
	Ring ${ }^{\text {r }}$			0.51	
	Ring ${ }^{\mu}$			E．Y	$\begin{gathered} \because \cdots 1 \\ (\mathbf{H S}) \end{gathered}$
	Ring	． 1.9 （ $\left.\cdot . \cdot \wedge V_{-} .10 r\right)$	$\cdots .1 \leqslant ะ(\because .89-\bullet .101)$	$\cdot .0 \%$	． 0 \＾1

	Ring ${ }^{\circ}$	$\cdot .10 r\left(\cdot .1 r_{-} .1 \wedge\right)$	$\cdot .1 \leqslant 9\left(\cdot .1 Y_{-} .19\right)$. 09	. 00
	Ring ${ }^{\prime}$	19.r()V.^.r.')	17.V(1ร.Y-17.9)	r.or	$<\cdot . \cdots 1$ (HS)
	Ring ${ }^{r}$	17.Y(10.V-19.1)	M.V(1Y.1-10.r)	r.1^	$\begin{gathered} =\cdots \cdots 1 \\ (\mathbf{H S}) \end{gathered}$
	Ring ${ }{ }^{\text {r }}$	17.1(1ร.V-1V.V)		Y.^r	-." 0 (S)
	Ring ${ }^{\text {s }}$	1ร.V(1Y.O-1V.Y)	1Y.7(1Y.V-1Y.V)	1.75	\cdots. 1
	Ring ${ }^{\circ}$	1ร.V(1Y.V-17.7)	1ร.Y(1Y.V-17.0)	1. $£ V$.10
$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { E } \end{aligned}$	Ring ${ }^{\text {I }}$	$\leqslant V(\leqslant 0.1-\leqslant 9.9)$	rV.0 (r\&.0-rq.r)	E.rr	$\begin{gathered} \langle\because \cdots \prime \\ (\mathbf{H S}) \end{gathered}$
	Ring ${ }^{r}$		MO.r (ro.•-MV.r)	T.Vへ	$\langle\cdot . \cdots\|$ (HS)
	Ring ${ }^{\top}$	MV.r (rร.0-rı.l)		r.r	
	Ring ${ }^{\text {s }}$	r¢.7(rr.O-rv.l)		1.0%	. $1{ }^{1}$
	Ring ${ }^{\circ}$	ro.r (rr.0.rV.r)		1.41	. 19

SE: spherical equivalent, CMT: central macular thickness,BCVA: bestcorrected visual acuity,S: Significant, HS: highly significant,Amp. $P^{\prime}(n V / d e g r):$ the average amplitude density of $P{ }^{\prime}$ 'wave,Amp. $P^{\prime}(\mathbf{m v}):$:amplitude of P^{\prime} wave, Amp. $\mathbf{N}^{\prime}(\mathrm{mv})$:amplitude of \mathbf{N}^{\prime} wave, PeT. $^{\prime}$ '(ms): implicit time of \mathbf{N}^{\prime} ' wave, PeT. $^{\prime}$ '(ms):implicit time of P^{\prime} wave, $Z_{M W U}$: Mann Whitney U test, OMD: occult macular dystrophy

All patients with OMD had normal scotopic and photopic responses of the full-field ERG (Fig. ${ }^{\Upsilon}$). Mf-ERG parameters in OMD patients showed significant central depression with less affection of the peripheral rings (Fig. ${ }^{〔}$ and). The average amplitude density of P) wave, amplitude of P^{\prime} wave and amplitude of N^{\prime} wave were significantly reduced in the central rings (ring $)^{\zeta}$ and r), with less impairment in the paracentral areas (ring ε and 0) in the OMD group in comparison to the control group (Fig. ${ }^{0-\gamma}$). The implicit time of P) and N^{\prime} ' waves were significantly delayed across the central rings in the OMD patients (Fig. \wedge and ${ }^{\varsigma}$ and Table ${ }^{\curlyvee}$).
r.) There were significant negative correlations between the amplitude of P^{\prime} and N^{\prime} waves $r \cdot r$ in the central rings (ring ${ }^{\prime}, r$ and r) with the BCVA(LogMAR).In OMD group, the patients with the least BCVA had the markedly reduced amplitude of P^{\prime} and N^{\prime} waves in

Y．ε
r．o
$r \cdot \tau$ had the most prolonged latency of P^{\prime} and N^{\prime} ）waves in the central rings（Table ${ }^{r}$ ）．
$r \cdot v$
r．Λ
r．q
ri．

HI
rir

Mr

Y！

Ylo
ril
riv

MA
riq
rr．
the central rings．The implicit time of P^{\prime} and N^{\prime} waves were significantly positively correlated with BCVA（LogMAR）．In the OMD group，the patients with the least BCVA
－

！）
r

Table（ ${ }^{(}$）：Correlation between BCVA and the mf－ERG parameters among the OMD group

mf－ERG parameters		BCVA	
		Rho	P
	Ring ${ }^{\text {l }}$	－． 91 Y	く．．${ }^{\text {a }}$（HS）
	Ring ${ }^{r}$	－•．7VA	$\cdots \cdot \cdots$（HS）
	Ring ${ }^{r}$	$-\cdot .7 \leqslant r$	－．${ }^{\text {r }}$（S）
	Ring ${ }^{\text {E }}$	$-\cdot .11 r$	． 74
	Ring ${ }^{\text {a }}$	－． .97	． 790
定空	Ring ${ }^{\text {r }}$	－． 911	く・••1（HS）
	Ring ${ }^{r}$	－．Vor	く．．${ }^{\text {c }}$（HS）
	Ring ${ }{ }^{\text {r }}$	－．．79Y	－．\cdot ）（HS）
	Ring＊		． 9 Y
	Ring ${ }^{\circ}$	－．M1V	－．1V
$\stackrel{?}{\square} Z-\underline{E}$	Ring ${ }^{\text {P }}$	－．．791	－．${ }^{\text {a }}$（HS）
	Ring ${ }^{r}$	－•．7ヶร	$\cdots \cdots(\mathrm{S})$

¡r. The model showed that the average amplitude density of $\mathrm{P} /$ wave in ring 1 and
rrє Table (\ddagger): Stepwise multiple linear regression analysis for the predictors of BCVA

Model summary	R ${ }^{+}$	$\begin{aligned} & \hline \text { Adjusted } \\ & \mathbf{R}^{\top} \end{aligned}$	SEE	F	P
	$\cdot 9.9$	$\cdot .9 \cdot \varepsilon$		1v9.\&	$\begin{gathered} \langle\cdot \cdot\| \\ (\mathrm{HS}) \end{gathered}$
Variable	Unstandardized Coefficients	Standardiz ed Coefficien ts	$\begin{aligned} & 90 \% \text { CIof } \\ & \text { B } \end{aligned}$	T	P

	B	Std． Error	Bet a			
（Constant）	1.14		－－	$\cdot .9 \Sigma-1 . r$	15.1	$<\cdot \cdots 1$（HS）
Amp．${ }^{\prime}$ ）（ $\mathrm{nV} / \mathrm{deg}{ }^{\text {「 }}$ ） Ring 1	$-\cdot .17$	$\cdots \cdots$		$\begin{aligned} & -\cdot .19- \\ & (-\cdot .1 \varepsilon) \end{aligned}$	1 1.9	$<\cdot . \cdots$（HS）
Amp．${ }^{\prime}$（mv）Ring ${ }^{\text {）}}$	－1．19	$\cdot .1 \cdot r$	－r．r09	$\begin{aligned} & -1.0- \\ & (-1 . \cdot v) \end{aligned}$	M．V	$<\cdot . \cdots)(\mathrm{HS})$
PeT．N ${ }^{\prime}$（ms）Ring ${ }^{\text {＇}}$	$\bullet \cdot 1$ ¢		－イッ	$\begin{aligned} & \ddots \cdot 11- \\ & \ddots \cdot 1 \mathrm{~V} \end{aligned}$	9.79	$<\cdot . \cdots)(\mathrm{HS})$
Amp．${ }^{\prime}$（mv）Ring ${ }^{\text {r }}$	$\cdot . \leqslant r 0$	．．0入	－イM	$\begin{aligned} & \because 0_{-} \\ & \ddots{ }^{\prime} \end{aligned}$	V．rr	$<\cdot . \cdots$（HS）
PeT．P ${ }^{(m s)}$ Ring ）	－．•＾	－．． 1	－．1⁄v	$\cdot{ }^{\mu}-.00$	0．${ }^{\text {r }}$	$<\cdot \cdots 1$（HS）
Amp． P^{\prime}（ $\mathrm{nV} / \mathrm{deg}{ }^{\text {r }}$ ） Ring r		－••1	$\cdots \cdot \cdot 1$	$\begin{aligned} & \because \because \cdot V_{-} \\ & (-\because . \cdots r) \end{aligned}$	r．rr	$\cdots \cdots 0(\mathrm{~S})$

BCVA：bestcorrected visual acuity，S：Significant，HS：highly significant，Amp．${ }^{\dagger}$（nV／deg ${ }^{r}$ ）：the average amplitude density of P^{\prime} wave，Amp．$P^{\prime}(\mathrm{mv})$ ：amplitude of P^{\prime} wave，Amp． \mathbf{N}^{\prime}（mv）：amplitude of N^{\prime} wave，
 standard error of estimate；F：F－ratio

Figure（ \upharpoonright ）：Normal scotopic and photopic responses of the full－field electroretinogram in a patient with occult macular dystrophy

Figure (${ }^{\Gamma}$): The multifocal electroretinogram of a patient with occult macular dystrophy, there was reduction of the amplitude of P^{\prime} wave in the central rings ($\left({ }^{(}{ }^{r}\right)$ with less affection of the peripheral rings.

Yo.

Figure ((): a) The optical coherence tomography of a patient with occult macular dystrophy (OMD) shows disruption of IS/OS segment and decreased foveal thickness b) The optical coherence tomography of normal subject C) The multifocal electroretinogram (mf-ERG) of OMD patient with reduced amplitude of P^{\prime} wave in central ring and lost foveal peak in the ${ }^{r}$ D layout d) mf-ERG in normal subject.

Figure (${ }^{\circ}$):Line graph showing median average amplitude density of P^{\prime} wave among the studied groups, there were marked reduction in the central rings in the occult macular dystrophy group.

Y． YVI

Figure（7）：Line graph showing median amplitude of P^{\prime} wave among the studied groups

7＾Figure（ \vee ）：Line graph showing median amplitude of N ）wave among the studied groups
ryr rym
rys
ryo

Figure（ \wedge ）：Line graph showing median implicit time of N ）wave among the studied groups

Figure（ 9 ）：Line graph showing median implicit time of P^{\prime} wave among the studied groups

Discussion：

r 人N

OMD is a rare type of macular dystrophy characterized by progressive loss of central vision due to macular dysfunction ($1, \downarrow$ v).It is usually misdiagnosed due to associated normal fundus appearance, normal FFA and normal full-field ERG ($\uparrow-0$). The ophthalmologists should keep it in mind as a possible cause of unexplained decreased visual acuity.

We report the first ten cases with OMD in Benha University Hospital. The precise analysis of mf-ERG helped us to make the diagnosis in spite of normal fundus, FFA and flash ERG.

Mf-ERG is considered the main diagnostic tool to distinguish OMD from other causes of decreased visual acuity with no visible fundus changes such as amblyopia, non-organic visual loss or optic nerve diseases ($\urcorner, \backslash \wedge$).

OMD should be also differentiated from other hereditary retinal diseases with normal fundus appearance such as congenital stationary night blindness $(19, r \cdot)$ and cone dysfunction syndromes ($(\uparrow, \Psi \uparrow)$.However, these diseases have abnormal full-field ERG with characteristics findings that help in their diagnosis.

Previous studies reported the presence of structural changes in the macular area of OMD patients evident by OCT $\left(9,1 \cdot, r^{r}-r_{0}\right)$.OCT may show reduction of foveal thickness and disrupted IS/OS junction. However, these changes may be subtle in some patients even in the presence of marked reduction in mf-ERG. This indicates that the functional changes in the macular area may precede the structural changes in these patient $(1,11)$. Padhi et al,
in their study，on two siblings with OMD reported that mf－ERG responses were markedly reduced in the central macula in spite of different OCT findings in both cases．The youngest patient had apparent mf－ERG changes with minimal OCT defect，and they concluded that the structural changes seen in the OCT might not always correspond to the degree of functional loss and that functional changes might precede the appearance of structural changes（ 1 ）．

In the present study，the OMD patients showed significant depression of mf－ERG responses especially in the central rings with less affection of the peripheral rings．These results reflect that the retinal dysfunction is confined to the central macula．These findings are comparable with previous studies that also reported marked central depression in mf－ERG $(1,\ulcorner, \vee, \wedge,\ulcorner \urcorner)$ ．

In the present study，the correlation between various mf－ERG parameters and visual acuity（V／A）were assessed．There was a significant negative correlation between the amplitude of P^{\prime} and N^{\prime} waves and the $\mathrm{BCVA}(\operatorname{LogMAR})$ ．In addition，there was a significant positive correlation between the implicit time of P^{\prime} and N^{\prime} waves and the BCVA（LogMAR）．In the OMD group，patients with the least BCVA had the markedly reduced amplitude and prolonged latency of P^{\prime} and N^{\prime} waves．A better BCVA was associated with less extensive macular dysfunction．Multiple regression analyses demonstrated that the amplitude and latency of P^{\prime} andN ${ }^{\prime}$ waves in the central rings（ 1 and ${ }^{r}$ ）were the most important determinants for BCVA．These mf－ERG parameters may be used for early detection of subclinical cases with positive family history and can be
used to detect minimal macular dysfunction at an early stage of OMD．It may also be a valuable biomarker in prediction of visual prognosis in OMD patients．

One of the limitations of the current study was the small number of included patients． Further genetic studies on a larger population sample and longitudinal follow－up are needed．

In conclusion，mf－ERG has a key role in detection of occult macular dystrophy and can be considered as a valuable objective test for detection of central／macular dysfunction， that had a profound impact on the visual acuity．The amplitude and latency of P^{\prime} and N^{\prime} waves in ring $'$ and r may be used as biomarkers for prediction of visual prognosis in these patients．

References：

1－Padhi TR，Videkar C，Jalali S，Mukherjee S，Panda GK，Das T．Structural and functional evaluation of macula in a 9 －year－old boy with occult macular dystrophy and his affected elder sibling．Oman J Ophthalmol r． 17 ； $9(1): 00 _0 \wedge$ ．
r－Miyake Y，Tsunoda K．Occult macular dystrophy．Jpn J Ophthalmol r．10；09：V1＿ A．
r－Miyake Y，Horiguchi M，Tomita N，Kondo M，Tanikawa A，Takahashi H，et al．

roo	£－Chen CJ，Scholl HP，Birch DG，Iwata T，Miller NR，Goldberg MF．Characterizing
rot	the phenotype and genotype of a family with occult macular dystrophy．Arch
rov	
rod	－Kondo M，Ueno S，Piao CH，Ito Y，Terasaki H，Miyake Y．Occult macular
roq	
ヶ7．	7－Miyake Y，Ichikawa K，Shiose Y，Kawase Y．Hereditary macular dystrophy
r7）	without visible fundus abnormality．Am J Ophthalmoll 9 入9；1 •＾：r9r＿r99．
r7\％	V－Piao CH，Kondo M，Tanikawa A，Terasaki H，Miyake Y．Multifocal
ヶヶ	electroretinogram in occult macular dystrophy．Invest Ophthalmol Vis Sci
ヶฯร	
r70	＾＿Wildberger H，Niemeyer G，Junghardt A．Multifocal electroretinogram（mfERG）
¢7\％	in a family with occult macular dystrophy（OMD）．Klin Monatsbl Augenheilkd
r7v	r．．r．rralll－110．
ヶ7＾	9．Kondo M，Ito Y，Ueno S，Piao CH，Terasaki H，Miyake Y．Foveal thickness in
¢79	occult macular dystrophy．Am J Ophthalmol r．．r；roivroovri．
rr．	1－－Brockhurst RJ，Sandberg MA．Optical coherence tomography findings in occult
rri	
rvr	${ }^{1}$ I－Park SJ，Woo SJ，Park KH，Hwang JM，Chung H．Morphologic photoreceptor
rrr	abnormality in occult macular dystrophy on spectral－domain optical coherence
rre	tomography．Invest Ophthalmol Vis Sci r．1．；01：rıvr＿rıva．
rro	1 r－Hood DC，Bach M，BrigellM，Keating D，Kondo M，Lyons JS，et al．ISCEV
rvi	standard for clinical multifocal electroretinography（mfERG）（ $\uparrow \cdot 11$ edition）．Doc
rvv	

rva	1 T －Hood DC，Bach M，Brigell M，Keating D，Kondo M，Lyons JS，et al．ISCEV
rva	guidelines for clinical multifocal electroretinography（ $\upharpoonright \cdots \vee$ edition）．Doc
rı．	Ophthalmol r．．入；117：1－11．
［＾1	1 －Akahori M，Tsunoda K，Miyake Y，Fukuda Y，Ishiura H，Tsuji S，et al．Dominant
rar	mutations in $\mathrm{RP}^{\prime} \mathrm{L}^{\prime}$ are responsible for occult macular dystrophy．Am J Hum
rar	
rノє	10－Davidson AE，Sergouniotis PI，Mackay DS，Wright GA，Waseem NH，
rıo	Michaelides M，et al．RP L^{\prime} \ variants are associated with a spectrum of inherited
rлт	retinal diseases including retinitis pigmentosa and occult macular dystrophy．Hum
rav	
rıл	17 －Qi Y－H，Gao F－J，Hu F－Y，Zhang S－H，Chen J－Y，Huang W－J，et al．Next－
r＾я	Generation Sequencing－Aided Rapid Molecular Diagnosis of Occult Macular
rq．	Dystrophy in a Chinese Family．Front Genet r．$\nu^{\prime} ; \wedge$ ：$) \cdot \nu$ ．
（9）	IV－TsunodaK，Usui T，HataseT，Yamai S，Fujinami K，Hanazono G，et al．Clinical
rar	characteristics of occult macular dystrophy in family with mutation
rar	
ア9ะ	1＾－Matthews GP，Sandberg MA，Berson EL．Foveal cone electroretinograms in
r90	patients with central visual loss of unexplained etiology．Arch
r97	
rav	19－Miyake Y，Yagasaki K，Horiguchi M，Kawase Y，Kanda T．Congenital stationary
r9＾	night blindness with negative electroretinogram．A new classification．Arch
r99	

\＆．．	r•－Bech－Hansen NT，Naylor MJ，Maybaum TA，Pearce WG，Koop B，Fishman GA，
\＆．）	et al．Loss－of－function mutations in a calcium channel alpha＇－subunit gene in
E．r	Xp ${ }^{\prime}$＇Ψ^{r} cause incomplete X －linked congenital stationary night blindness．Nat
\＆．r	Genet 199＾；19：Y7
$\varepsilon \cdot \varepsilon$	Y－Miyake Y．Cone dystrophy．In：Miyake Y，ed．Electrodiagnosis of retinal diseases．
\＆．O	
\＆．7	Yr－Miyake Y．Rod monochromacy．In：Miyake Y，ed．Electrodiagnosis of retinal
\＆．V	
\＆．入	Yr－KoizumiH，Maguire JI，SpaideRF．Spectral domain optical coherence
\＆．9	tomographic findings of occult macular dystrophy．Ophthalmic Surg Lasers
\＆）．	
〔）	r＿－KimYG，Baek SH，Moon SW，Lee HK，Kim US．Analysis of spectral domain
Elr	optical coherence tomography findings in occult macular dystrophy ．Acta
ミ1ヶ	Ophthalmolr．11；＾9（1）：0ヶ．07．
そり	ro－Nakamura N，Tsunoda K，Mizuno Y，Usui T，Hatase T，Ueno S，et al．Clinical
\＆10	stages of occult macular dystrophy based on optical coherence tomographic
ミ17	findings．Invest Ophthalmol Vis Scir．19；7．
Eiv	Y 7－Ahn SJ，AhnJ，Park KH，Woo SJ．Multimodal imaging of occult macular
〔11	
¢19	

