Original article

r Role of multifocal electroretinogram in prediction of visual prognosis in

r patients with occult macular dystrophy.

```
٤
```

• Running title: mf-ERG in occult macular dystrophy, Abdelshafy and

۲ Abdelshafy

v Received: ۲۹ February ۲۰۲۰

A Revised: \o June \.Y.

Accepted: \checkmark June \checkmark \checkmark

۱.

Abstract:

Background:

۲۳ Occult macular dystrophy (OMD) is a rare hereditary macular dystrophy characterized by

severe bilateral progressive loss of central vision with normal fundus appearance and

normal fundus fluorescein angiography (FFA).

Aim:

1 The aim of the present study was to assess the correlation between the multifocal

va electroretinogram (mf-ERG) parameters and best corrected visual acuity (BCVA) in

patients with OMD.

Y. Patients and methods:

Twenty eyes of \cdot patients with OMD and twenty eyes of \cdot age and gender matched

normal subjects were included in this study. Full ophthalmic examination, FFA, optical

^{**} coherence tomography (OCT),full field electroretinogram (ERG) and mf-ERG were
^{*} performed for all participants. The average amplitude density of P¹ wave, amplitude and
^{*} implicit time of P¹ and N¹ waves were recorded in the five concentric hexagon rings.
^{*} The correlation between these mf-ERG parameters and BCVA (LogMAR) were
^{*} analyzed.

Results:

۲٩ There were no statistically significant differences in age, gender and refraction between the studied groups ($p=\cdot,\circ\xi$, \cdot,\cdot and $\cdot,\wedge\gamma$, respectively).Mf-ERG parameters in OMD ۳. ۳١ patients showed significant central depression with less affection of peripheral rings. The ٣٢ average amplitude density of P¹ wave, amplitude of P¹ and N¹ waves were significantly ٣٣ reduced in the central rings (ring 1, 7 and 7), with less impairment in the paracentral ٣٤ areas(ring ξ and \circ). The implicit time of P¹ and N¹ waves were significantly delayed ۳0 across the central rings in the OMD patients. The BCVA(LogMAR) was significantly 37 negatively correlated with the amplitude of P¹ and N¹ waves($p \le \cdots$). The BCVA ۳۷ (LogMAR) was significantly positively correlated with the implicit time of P¹ and N¹ ۳۸ waves $(p \leq \dots)$. Multiple regression analysis demonstrated that the amplitude and ۳٩ latency of P¹ and N¹ waves in the central rings (¹ and ⁴) were the most important ٤. determinants for BCVA.

٤١ Conclusion:

Mf-ERG has a key role in detection of OMD and can be considered as a valuable

 $\mathfrak{L}^{\mathbf{r}}$ objective test for detection of central/macular dysfunction. The amplitude and latency of

P1 andN1 waves in ring 1 and 7 may be used as biomarkers for prediction of visual
prognosis in these patients.

٤٦ Keywords:

Multifocal electroretinogram, visual acuity, occult macular dystrophy, optical coherence
 tomography.

٤٩

•• Introduction:

01 Occult macular dystrophy (OMD) is a rare hereditary macular dystrophy (1, 7). It is ٥٢ characterized by severe bilateral progressive loss of central vision with no visible ٥٣ abnormalities in the fundus and normal fundus fluorescein angiography ($(\gamma - \circ)$). It was first 0 2 described by Miyake in 1949 (7). Both scotopic (rod) and photopic (cone) components of 00 the conventional full field electroretinogram (ERG) are essentially normal in OMD ٥٦ patients. However, the focal macular electroretinogram and multifocal ٥٧ electroretinogram(mf-ERG)show marked reduction of amplitude which indicate that the ٥٨ dysfunction of the retina is confined to the central macula rather than the retinal periphery 09 (\vee, \wedge) .OMD is often misdiagnosed due to the normal appearance of both fundus and ٦. fluorescein angiography which makes the diagnosis of such patients a challenging ٦١ situation (7). ٦٢

With advancement of spectral domain optical coherence tomography (SD-OCT), eyes
with OMD were found to have structural changes even in absence of any macular
abnormalities on fundus examination(1).SD-OCT may show disruption of the
photoreceptor and/or outer nuclear layers, lost ellipsoid zone, loss of the inner segmentouter segment (IS-OS) junction and reduction of the foveal thickness. However, some

٦٨	cases were reported to have minimal to subtle changes in OCT in spite of macular
٦٩	dysfunction (٩-١١).
٧.	
۷١	Multifocal ERG (mf-ERG) provides a topographic measurement of the macular function,
۲۷	centered on the posterior retina($(, \circ, -, \circ)$) on either side of fixation, by recording many
۷٣	local electroretinogram responses ($11 \text{ or } 1.7$) from the cone-driven photoreceptor layer
٧٤	under photopic condition (¹ ⁷ , ¹ ⁷).
٧٥	
٧٦	OMD has been known to be caused by mutations in the retinitis pigmentosa \-like
٧٧	(RP ¹ L ¹) gene. The most common mode of inheritance is autosomal dominant (AD).
۷۸	However, sporadic cases were also reported (1ξ - 17).
٧٩	
٨.	The aim of the present study was to highlight the crucial role of mf-ERG in diagnosis of
۸ ١	OMD and to delineate its role in prediction of visual prognosis in these patients by
٨٢	studying the correlation between the mf-ERG parameters and best corrected visual acuity
٨٣	(BCVA).
٨٤	
۸0 ۸٦ ۸۷	Patients and methods:
٨٨	Forty eyes of \cdot patients were included in this cross-sectional comparative study, which
٨٩	was conducted between January ۲۰۱۸ and February ۲۰۲۰. All participants were recruited
٩.	from the Outpatient Clinics of Benha University Hospital. After approval of the Local
۹١	Ethical Committee of the Faculty of Medicine, Benha University, all participants or their

٩٢	legal guardians signed a written informed consent with the requirements of the
٩٣	Declaration of Helsinki to participate in the study and for publication of data before
٩٤	enrollment in the study.

٩٦ Participants were divided into ⁷ groups: twenty eyes of ¹ • patients diagnosed with occult ٩٧ macular dystrophy; τ males and ξ females, ranging in age from $\tau \xi$ to τA years(OMD) ٩٨ group) and twenty eyes of \cdot age and gender matched normal subjects; \cdot males and ϵ 99 females, ranging in age from $1 \notin to$ vears (control group).OMD was diagnosed 1 . . according to the following findings: presence of bilateral progressive loss of central 1.1 vision, no visible abnormality on fundus examination, normal fundus fluorescein 1.1 angiography, normal scotopic and photopic components of the full field ERG with 1.7 marked reduction of the focal macular cone ERG. Six patients reported the presence of 1.2 visual problems in other family members, while the other four patients had no positive 1.0 family history. The healthy volunteers had BCVA better than 1/9, with no associated 1.7 ocular diseases.

۱۰۷

All participants had full ophthalmologic examination including slit-lamp examination,
 refraction, best corrected visual acuity (BCVA) using Snellen's chart(expressed as
 LogMAR), intraocular pressure (IOP) measurement by applanation tonometry, dilated
 fundus examination, fundus fluorescein angiography (FFA),optical coherence
 tomography (OCT),full field electroretinogram (ERG) and multifocal electroretinogram
 (mf-ERG).

115	Spectral-domain (SD)-OCT scans (Topcon ^r D OCT model ^r ··· FA version ^A . ^r ·,
110	Topcon Corporation Company, Tokyo, Japan) was used for analysis of macular
١١٦	morphology.
117	Full field ERG and mf-ERG were recorded after pupil dilatation, using RETI-port/scan
١١٨	(Roland Consult, Brandenburg, Germany) and following the International Society for

Clinical Electrophysiology of Vision (ISCEV) standards (1).

۱۲۰

Mf-ERG was recorded using HK Loop electrodes (Hawlina – Konec electrode, HK Med,
 Avantia, Ljubljana, Slovenia)which were installed into the lower fornix, with the
 reference skin electrodes attached on the skin near the orbital rim temporally of each eye
 and ground skin electrodes attached on the central part of the forehead.

170

177	The mf-ERG stimulus consisted of \mathcal{V} hexagons, covering a visual field of $\mathcal{V} \cdot \circ$ and was
١٢٧	presented on a monitor (at a viewing distance of $\gamma\gamma$ cm from the patient). Each hexagon
١٢٨	was alternated between light and dark. Each hexagon was stimulated with the same m-
179	sequence (frame rate: $\vee \circ$ Hz, hexagon luminance: $\vee \vee \cdot$ cd/m ^{-\vee} in the lighted state and < \vee
۱۳.	cd/m γ in the dark state and the contrast between white and black hexagons was 97%).
١٣١	Each recording session was subdivided into Arecording cycles.

١٣٣	The following mf-ERG parameters were recorded in the five concentric hexagon rings:
185	the average amplitude density of P ¹ wave{ Amp.P ¹ $(nV/deg7)$ },amplitude of P ¹ wave
180	Amp.P'(mv), amplitude of N' wave $Amp.N'(mv)$, implicit time of N'
187	wave{PeT.N (ms) } and implicit time of P (ms) }. The correlation between
157	these mf- ERG parameters and visual acuity(BCVA, logMAR) were analyzed.

Statistical analysis:

15. The collected data were tabulated and analyzed using SPSS (the Statistical Package

151 For Social Sciences software, version 17; SPSS Inc., Chicago, Illinois, USA). Categorical 157 data were presented as number and percentages, and analyzed by Fisher's exact test 157 (FET). Quantitative data were tested for normality using Shapiro-Wilks test assuming 122 120 quartile range (IQR), and were analyzed by Mann Whitney U test (Z_{MWU}) for 7127 independent groups. Spearman's correlation coefficient (rho) was used to assess non-١٤٧ parametric correlations. Significant factors of correlation were entered through stepwise ١٤٨ multiple linear regression analysis to detect the significant predictors of BCVA. P≤·. • • 129 was considered significant and $p \le \cdots$ was considered highly significant.

10.

101

Results:

Twenty eyes of \cdot patients diagnosed with occult macular dystrophy; \exists males ($\exists \cdot ?$) and $\epsilon (\epsilon \cdot ?)$ females, with a mean age of $\exists \cdot ? \pm \exists \cdot$ years (OMD group) and twenty eyes of $\exists \cdot$

100	age and gender matched normal subjects; $(1, 2)$ males and $\xi(\xi, 2)$ females, with a
107	mean age of 19.7±7.1 years(control group) were included in the study. There were no
101	statistically significant differences in age, gender and refraction between the studied
101	groups ($p=\cdot .\circ \xi$, $\cdot .\cdot$ and $\cdot .\wedge \tau$, respectively, Table \cdot and τ).

Table (1): Age and gender of the studied groups

Variable		OMD group (n='`)	Control group (n=1.)	Test of significa nce	р
Age (ys)	Mean±SD Range median (IQR)	19.7±7.• (12.7A) 10.• (12.A.70)	19.7±7.1 (12.7°.) 17.• (10.0.72)	Z_{MWU}	· . 0 ź
Gender (No, %)	Male Female	۲ (۲۰.۰٪) ٤ (٤٠.۰٪)	۲ (۲۰.۰٪) ٤ (٤٠.۰٪)	FET	۱.۰

111 171

Z_{MWU}:Mann Whitney U test,FET:Fisher's Exact test,OMD:occult macular dystrophy

- 177
- 175

All patients with OMD had normal fundus picture and normal FFA. The OCT in OMD

patients showed significant thinning of the central macular thickness (CMT) in

comparison to the control group ($p < \cdots$), Table γ). The OCT findings in OMD patients

varied between disruption of the photoreceptor/outer nuclear layers with lost ellipsoid

zone and foveal cavitation in ¹^r eyes (¹ %),minimal central loss of the IS-OS junction

- γ and reduction of the foveal thickness in γ eyes (γ , %),while γ eyes(γ , %) were reported to
- have no changes in the OCT (Fig. ¹).

Figure (1): Fundus picture and fundus fluorescein angiography of patient with occult

11/A macular dystrophy: no visible abnormalities ,The optical coherence tomography of both

eyes show lost ellipsoid zone, disruption of the photoreceptor Is/Os layer and foveal

vo. cavitation (gap in subfoveal outer segment layer not associated with diffuse retinal

thinning)

۱۸۲

۱۸۳

Variable OMD eyes $(n= \forall \cdot)$ Р Normal eyes $(n=\forall \cdot)$ Z_{MWU} Median (IQR) Median (IQR) -•.77 [-1.70-(-•.0)] SE -•.⁷^m [-•.^{Vo}-(-•.^o)] 109 (107-170) 787 (770-720) 0 27 <.... CMT **(HS)** $\cdot \wedge (\cdot, \vee - \cdot, \wedge)$ · · · (· - · .)) 0.07 <.... BCVA(LogMAR) (HS) XX (X) (71 (77 A) 751 (017-77.) 0.21 <.... Ring \ Amp.P¹ (nV/deg¹) (HS) 7,75(0,7-V,V7) $T_{1}T_{1}T_{1}T_{1}$ 0 21 <...1 Ring ^{*} (\mathbf{HS}) $\Lambda \in I(7, \Lambda_1, 1, 1)$ $1V_{1}(17_{-}1A_{1})$ 0.7 <.... Ring " (HS) $9.9\%(\Lambda.9-1.V)$ ٤.٠ <.... Ring £ 771 (0 2-17) (HS) 0, 10 (0, 1-4,9) Ring ° Λ_{2} $\xi \gamma (V_{1} - q_{1} T)$ 7..7 •.•• ۲ (S) $111(1 \cdot - 17)$ 0 11 <.... Ring \ ·. ٣٩ (·. ٣٢-·. ٤٥) (HS) · . VV (• . V 1 - • . A 7) 0.21 <.... $\cdot, 17(\cdot, 17_{-}, 19)$ Ring ^v Amp.P' (mv) (HS) · 71 (· 0A_· 70) 0,19 <.... Ring " (HS) · · · (· 22-· · A) ٤.11 <.... · . ٣ ٤ (· . ٢٧- · . ٤٣) Ring £ **(HS)** ·. ٣٤ (·. ٣٤-·. ٥٢) 1.11 Ring ° ·.· * (S) ٤.٧٦ <.... ·. 1 A (·. 1 - ·. 7 1) Ring \ (HS) Amp.N' (mv) . 100 (. 11-. 17) 0.21 <.... Ring [¥] (HS) · 19T (· 12-· TV) 5.44 <.... Ring " **(HS)** · 1 · 9 (· · · AV_· · 10T) · 122 (· · · V9_· · 101) Ring £ . 0 2 . 0 / /

Table (*): Comparing the studied eyes regarding the studied parameters.

	Ring °	•.107 (•.17-•.14)	•.129 (•.17-•.19)	. 09	
	Ring \	19.7 (14.7.1)	17.7 (15.7-17.9)	۳.0۲	<··· · \ (HS)
T.N' ms)	Ring ^v	17.7 (10.7-19.1)	17.7 (17.1-10.7)	۳.۱۸	$= \cdot \cdot \cdot \cdot \cdot $ (HS)
Pe	Ring ^w	17.1 (15.7-17.7)	15. (17. 15. 7)	۳۸.۲	•.•• • (S)
	Ring [£]	15.7 (17.0-17.7)	۱۳.٦ (۱۲.٧-۱۳.۷)	1.75	•.1•
	Ring °	15.7 (17.7-17.7)	15.7 (17.7-17.0)	1.57	.10
	Ring \	٤٧ (٤٥.١-٤٩.٩)	۳۷.٥ (٣٤.٥-٣٩.٢)	٤.٢٣	<·.··\ (HS)
T.P ' ms)	Ring ^v	٤٣.٨ (٣٦.٣-٤٦.٥)	۳۰.۳ (۳۰.۰-۳۷.۳)	۳.۷۸	<·.·· \ (HS)
Pe 〔	Ring ^w	۳۷.۲ (۳٤.٥-۳۸.۱)	٣٤.٣ (٣٢.٤-٣٦.٣)	۳.۰۳	··· ۲ (S)
	Ring [£]	٣٤.٦ (٣٣.٥_٣٧.١)	٣٤.٣ (٣٢.٤-٣٥.٣)	1.07	•.17
	Ring °	۳۰.۳ (۳۳.۰-۳۷.۳)	۳٤.٣ (٣٣.٣-٣٦.٣)	1.771	•.19

 $\begin{array}{ll} & \text{SE: spherical equivalent, CMT: central macular thickness, BCVA: bestcorrected visual acuity, S: Significant, \\ & \text{HS: highly significant, Amp.P^{(nV/deg^{)}): the average amplitude density of P^{ wave, Amp.P^{(mv): amplitude of P^{ wave, Amp.N^{(mv): amplitude of N^{ wave, PeT.P^{(ms): implicit time of N^{ wave, PeT.P^{(ms): implicit time of P^{ wave, Z_{MWU}: Mann Whitney U test, OMD: occult macular dystrophy} \end{array}$

- 19.
- 191

۱۹۲ All patients with OMD had normal scotopic and photopic responses of the full-field ERG 198 (Fig. ⁷). Mf-ERG parameters in OMD patients showed significant central depression with 195 less affection of the peripheral rings (Fig.^{γ} and ξ). The average amplitude density of P¹ 190 wave, amplitude of P¹ wave and amplitude of N¹ wave were significantly reduced in the ۱۹٦ central rings (ring 1,7 and 7), with less impairment in the paracentral areas (ring $\frac{1}{2}$ and \circ) ۱۹۷ in the OMD group in comparison to the control group (Fig. \circ - \vee). The implicit time of P^{\vee} ۱۹۸ and N¹ waves were significantly delayed across the central rings in the OMD patients 199 (Fig. \wedge and \neg and Table γ).

۲.,

2.1	There were significant r	egative correlation	s between the amplitude of F	n and N	waves
-----	--------------------------	---------------------	------------------------------	---------	-------

in the central rings (ring 1,7 and 7) with the BCVA(LogMAR). In OMD group, the

patients with the least BCVA had the markedly reduced amplitude of P1 and N1 waves in

۲ • ٤	the central rings. The implicit time of P 1 and N 1 waves were significantly positively
۲.0	correlated with BCVA (LogMAR). In the OMD group, the patients with the least BCVA
۲.٦	had the most prolonged latency of P ¹ and N ¹ waves in the central rings (Table ^{γ}).
۲۰۷	
۲۰۸	
۲.٩	
۲۱.	
117	
717	
212	
212	
210	
217	
717	
۲۱۸	

- Table ("):Correlation between BCVA and the mf-ERG parameters among the OMD group 219
- ۲۲.

mf-ERG parameters		BCVA		
		Rho	Р	
(Ring \	-•.917	<•.•• (HS)	
P.	Ring ^v	_•. ٦٧٨	۰.۰۰ ^۱ (HS)	
Jp.	Ring [#]	_• <u>.</u> ٦٤٣	۰.۰۰۳ (S)	
An JV/	Ring [£]	<u></u> 11٣	•_٦٣	
	Ring °	-•.•9٣	• .790	
	Ring \	-•_911	<•.•• (HS)	
á –	Ring ^v	_•.Vo٣	<•.•• (HS)	
du	Ring ^r	_• <u>.</u> ٦٩٢	۰.۰۰ ^۱ (HS)	
An (j	Ring [£]	-•.•٢٤	• 97	
	Ring °	_• <u></u> ~)Y	•_17	
	Ring \	_• <u></u> ٦٩١	۰.۰۰ ^۱ (HS)	
8478	Ring Y	_• <u>.</u> ٦٢٤	• • • ٣ (S)	

	Ring ^w	_• <u>.</u> 077	•.• [\] [\] (S)
	Ring [£]	<u>-•</u> •^Y	•_ ٧٣
	Ring °	_۰ <u></u> ۱۹٦	•_ ٤ ١
	Ring \	• • • • •	<•.•• (HS)
ź	Ring ^v	•_727	•.•• ⁷ (S)
T.T ms	Ring ^w	• 020	۰.۰ ^۱ ۳ (S)
Pe	Ring [£]	• . ٣١٠	•_1A
	Ring °	• 700	•_77
	Ring \	• . ٧٩١	<•.•• (HS)
í.	Ring ^v	• • • • •	<•.•• (HS)
L.T. ms	Ring ^w	•_075	$\cdot \cdot \cdot \wedge (S)$
Pe	Ring [£]	• • 79	• 9 •
	Ring °	• 101	• • • • •

BCVA: bestcorrected visual acuity,S: Significant, HS: highly significant,mf-ERG: the multifocal

electroretinogram, Amp.P¹(nV/deg¹):the average amplitude density of P¹ wave, Amp.P¹(mv):amplitude of P¹ wave, Amp.N¹(mv):amplitude of N¹ wave, PeT.N¹(ms): implicit time of N¹ wave, PeT.P¹(ms):implicit time of P¹ wave, rho:Spearman's correlation coefficient, OMD: occult macular dystrophy

- 770 777
- 7 7 V

The factors that were found to be significantly correlated with BCVA were entered in the stepwise multiple linear regression model to detect its significant predictors (Table ξ). The model showed that the average amplitude density of P¹ wave in ring ¹ and "7" Y, amplitude of N¹ wave in ring ¹ and ⁷ and P¹ and N¹ implicit times in ring ¹ were the significant predictors of BCVA (p<·...o for all).

۲۳۳

Table (٤): Stepwise multiple linear regression analysis for the predictors of BCVA

Model summary	R	Adjusted R [°]	SEE	F	Р
	• . ٩ • ٩	•_9•£	•_• \$V	١٧٩ ٤	<•.•• \ (HS)
		Standardia		T	
Variable	Unstandardized Coefficients	ed Coefficien ts	B	Т	P

	В	Std. Error	Bet a			
(Constant)	۱ <u>.</u> ۱۳	• • • • • •		•.92-1.7	۳_۳۱	$<\cdot,\cdot,\cdot$ (HS)
Amp.P۱ (nV/deg ۲) Ring ۱	-•.•١٦	•)	-•.^£V	-•.•١٩- (-•.•١٤)	١٤٩	<•.•• (HS)
Amp.N۱(mv) Ring ۱	-1.79	•_1•*	-•.٢٥٩	-_o_ (-\V)	۷_۲۱	<•.•• (HS)
PeT.N۱(ms) Ring ۱	•_•) ٤	•.••)	•_٢٦٣	•••)_ •••\V	9,79	<'.'' (HS)
۲ Amp.N۱(mv) Ring	• . ٤٢٥		۰_۲۳٦	• • • • • • • • • • • • • • • • • • • •	٧.٣٣	<•.•• (HS)
PeT.P۱(ms) Ring ۱	•_••٨	• • • • 1	•_154	•.٣-•.00	0.72	<•.•• (HS)
Amp.P1 (nV/deg ۲)	-• <u>.</u> ••£	•.••)	-···^)	-•.••¥- (-•.••¥)	٣.٣٣	•.••° (S)

BCVA: bestcorrected visual acuity, S: Significant, HS: highly significant, Amp.P⁽(nV/deg[†]): the average

amplitude density of P^1 wave, Amp. $P^1(mv)$: amplitude of P^1 wave, Amp. $N^1(mv)$: amplitude of N^1 wave,

 $\gamma\gamma\Lambda$ PeT.N¹(ms): implicit time of N¹ wave, PeT.P¹(ms): implicit time of P¹ wave, R⁷: Regression coefficient, SEE:

TT9 standard error of estimate; F: F-ratio

۲٤۰

251

- Figure (⁷):Normal scotopic and photopic responses of the full-field electroretinogram in a
- ^γετ[°] patient with occult macular dystrophy

- ۲٤٦ Figure (^۳): The multifocal electroretinogram of a patient with occult macular dystrophy,
- $\gamma_{\xi\gamma}$ there was reduction of the amplitude of P¹ wave in the central rings (¹,^{γ}) with less
- $\gamma \notin \Lambda$ affection of the peripheral rings.

- Figure (ξ) : a) The optical coherence tomography of a patient with occult macular
- dystrophy (OMD) shows disruption of IS/OS segment and decreased foveal thickness b)
- The optical coherence tomography of normal subject C) The multifocal
- electroretinogram (mf-ERG) of OMD patient with reduced amplitude of P¹ wave in
- central ring and lost foveal peak in the ^rD layout d) mf-ERG in normal subject.

Figure (°):Line graph showing median average amplitude density of P'wave among

the studied groups, there were marked reduction in the central rings in the occult macular dystrophy group.

221

707 707

Figure (7):Line graph showing median amplitude of P¹ wave among the studied groups

Figure ($^{\vee}$):Line graph showing median amplitude of N $^{\vee}$ wave among the studied groups v.

Figure (٩):Line graph showing median implicit time of P1 wave among the studied
 groups
 YA0

Discussion:

777	OMD is a rare type of macular dystrophy characterized by progressive loss of central
۲۸۹	vision due to macular dysfunction $(1, 1)$. It is usually misdiagnosed due to associated
۲٩.	normal fundus appearance, normal FFA and normal full-field ERG ($^{\circ}$ - $^{\circ}$). The
291	ophthalmologists should keep it in mind as a possible cause of unexplained decreased
292	visual acuity.
292	
795	We report the first ten cases with OMD in Benha University Hospital. The precise
890	analysis of mf-ERG helped us to make the diagnosis in spite of normal fundus, FFA and
292	flash ERG.
292	
۲۹۸	Mf-ERG is considered the main diagnostic tool to distinguish OMD from other causes of
299	decreased visual acuity with no visible fundus changes such as amblyopia , non-organic
۳	visual loss or optic nerve diseases $(7, 1^{\Lambda})$.
۳.۱	OMD should be also differentiated from other hereditary retinal diseases with normal
۳.۲	fundus appearance such as congenital stationary night blindness $(19, 7.)$ and cone
۳.۳	dysfunction syndromes $(\gamma, \gamma\gamma)$. However, these diseases have abnormal full-field ERG
۳ • ٤	with characteristics findings that help in their diagnosis.
۳.0	
٣.٦	Previous studies reported the presence of structural changes in the macular area of OMD
۳.٧	patients evident by OCT ($^{9}, ^{1}, ^{7}, ^{7}$).OCT may show reduction of foveal thickness and
۳.۸	disrupted IS/OS junction. However, these changes may be subtle in some patients even in
۳.٩	the presence of marked reduction in mf-ERG. This indicates that the functional changes
۳۱.	in the macular area may precede the structural changes in these patient $(1,1)$. Padhi et al,

711	in their study, on two siblings with OMD reported that mf-ERG responses were markedly
317	reduced in the central macula in spite of different OCT findings in both cases. The
313	youngest patient had apparent mf-ERG changes with minimal OCT defect, and they
315	concluded that the structural changes seen in the OCT might not always correspond to the
310	degree of functional loss and that functional changes might precede the appearance of
۳۱٦	structural changes ().

In the present study, the OMD patients showed significant depression of mf-ERG responses especially in the central rings with less affection of the peripheral rings. These results reflect that the retinal dysfunction is confined to the central macula. These findings are comparable with previous studies that also reported marked central depression in mf-ERG $(1, r, \sqrt{2}, \sqrt{2})$.

۳۲۳

٣٢٤ In the present study, the correlation between various mf-ERG parameters and visual 370 acuity (V/A) were assessed. There was a significant negative correlation between the ۳۲٦ amplitude of P¹ and N¹ waves and the BCVA(LogMAR). In addition, there was a 322 significant positive correlation between the implicit time of P¹ and N¹ waves and the ۳۲۸ BCVA(LogMAR). In the OMD group, patients with the least BCVA had the markedly 379 reduced amplitude and prolonged latency of P1 and N1 waves. A better BCVA was ۳۳. associated with less extensive macular dysfunction. Multiple regression analyses 371 demonstrated that the amplitude and latency of P^{1} and N^{1} waves in the central rings (1) ۳۳۲ and \checkmark) were the most important determinants for BCVA. These mf-ERG parameters may ۳۳۳ be used for early detection of subclinical cases with positive family history and can be

used to detect minimal macular dysfunction at an early stage of OMD. It may also be avaluable biomarker in prediction of visual prognosis in OMD patients.

One of the limitations of the current study was the small number of included patients.

Further genetic studies on a larger population sample and longitudinal follow-up are

۳۳۸ needed.

۳۳۹

٣٤.	In conclusion, mf-ERG has a key role in detection of occult macular dystrophy and can
321	be considered as a valuable objective test for detection of central/macular dysfunction,
322	that had a profound impact on the visual acuity. The amplitude and latency of P1 and N1
٣٤٣	waves in ring 1 and 7 may be used as biomarkers for prediction of visual prognosis in
٣٤٤	these patients.

٣٤0

322

References:

٣٤٨	- ۱	Padhi TR,Videkar C,Jalali S, Mukherjee S,Panda GK, Das T.Structural and
329		functional evaluation of macula in a 9-year-old boy with occult macular dystrophy
۳0.		and his affected elder sibling.Oman J Ophthalmol ۲۰۱٦; ۹(۱):০০–০٨.
301	۲_	Miyake Y,Tsunoda K.Occult macular dystrophy. Jpn J Ophthalmol ۲۰۱0;09:۷۱–
301		٨٠.
TOT	۳_	Miyake Y,Horiguchi M, Tomita N, Kondo M,Tanikawa A, Takahashi H,et al.
30 E		Occult macular dystrophy. <i>Am J Ophthalmol</i> ۱۹۹٦; ۱۲۲(٥): ٦٤٤–٦٥٣.

۲.

700	٤_	Chen CJ, Scholl HP, Birch DG, Iwata T, Miller NR, Goldberg MF. Characterizing
707		the phenotype and genotype of a family with occult macular dystrophy. Arch
Tov		Ophthalmol $7.17; 17.1002 - 1009$.
Тол	٥_	Kondo M, Ueno S, Piao CH, Ito Y, Terasaki H, Miyake Y. Occult macular
T09		dystrophy in an 1 -year old boy. Br J Ophthalmol $1 \cdot \cdot \xi; AA: 13 \cdot 1 - 13 \cdot 7$.
٣٦.	٦_	Miyake Y, Ichikawa K, Shiose Y, Kawase Y. Hereditary macular dystrophy
۳٦ I		without visible fundus abnormality. Am J Ophthalmol 1949; 1.4: ۲۹۲–۲۹۹.
۳٦٢	٧_	Piao CH, Kondo M, Tanikawa A, Terasaki H, Miyake Y. Multifocal
٣٦٣		electroretinogram in occult macular dystrophy. Invest Ophthalmol Vis Sci
375		۲; ٤١:0١٣_0١٧
770	٨_	Wildberger H, Niemeyer G, Junghardt A. Multifocal electroretinogram (mfERG)
811		in a family with occult macular dystrophy(OMD). Klin Monatsbl Augenheilkd
MIN		TT;TT.:111_110.
77 1	٩_	Kondo M, Ito Y, Ueno S, Piao CH, Terasaki H, Miyake Y. Foveal thickness in
829		occult macular dystrophy. Am J Ophthalmol ۲۰۰۳; ۱۳۰:۷۲۰_۷۲۸.
۳۷.	۱.	-Brockhurst RJ, Sandberg MA. Optical coherence tomography findings in occult
۳۷۱		macular dystrophy. Am J Ophthalmol ۲۰۰۷; ۱٤٣: ٥١٦-٥١٨.
377	11	-Park SJ, Woo SJ, Park KH, Hwang JM, Chung H. Morphologic photoreceptor
rvr		abnormality in occult macular dystrophy on spectral-domain optical coherence
٣٧٤		tomography. Invest Ophthalmol Vis Sci ۲۰۱۰;01:۳٦٧٣_٣٦٧٩.
370	۱۲	-Hood DC, Bach M, BrigellM, Keating D, Kondo M, Lyons JS, et al. ISCEV
۳ ۷٦		standard for clinical multifocal electroretinography (mfERG) (۲۰۱۱ edition). Doc
TVV		Ophthalmol $\gamma \cdot \gamma \gamma \gamma \varepsilon \gamma - \gamma \tau$.

TVA	۳-Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, et al. ISCEV
379	guidelines for clinical multifocal electroretinography ($\forall \cdot \cdot \forall$ edition). Doc
۳۸.	Ophthalmol $\forall \cdot \cdot \wedge; \forall \forall : 1 - 1 \rangle$.
۳۸۱	٤- Akahori M, Tsunoda K, Miyake Y, Fukuda Y, Ishiura H, Tsuji S, et al. Dominant
۳۸۲	mutations in RP1L1 are responsible for occult macular dystrophy. Am J Hum
۳۸۳	Genet $\gamma \cdot \gamma \cdot ; \Lambda \gamma : \epsilon \gamma \epsilon = \epsilon \gamma \gamma$.
٣٨٤	۰-Davidson AE, Sergouniotis PI, Mackay DS, Wright GA, Waseem NH,
۳٨٥	Michaelides M, et al. RP1L1 variants are associated with a spectrum of inherited
۳۸٦	retinal diseases including retinitis pigmentosa and occult macular dystrophy. Hum
7 A V	$Mutat$ [*] ·) [*] ; [*] $\epsilon:$ •· ¹ -•) ϵ .
۳۸۸	۲-Qi Y-H, Gao F-J, Hu F-Y, Zhang S-H, Chen J -Y, Huang W-J, et al. Next-
379	Generation Sequencing-Aided Rapid Molecular Diagnosis of Occult Macular
٣٩.	Dystrophy in a Chinese Family. Front Genet ۲۰۱۷; ۸: ۱۰۷.
391	V-TsunodaK, Usui T, HataseT, Yamai S, Fujinami K, Hanazono G, et al. Clinical
397	characteristics of occult macular dystrophy in family with mutation
٣٩٣	of $RP L$ gene. $Retina$ $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$
٣٩٤	1A-Matthews GP, Sandberg MA, Berson EL. Foveal cone electroretinograms in
390	patients with central visual loss of unexplained etiology. Arch
391	Ophthalmol 1997; 11.: 107A_10V.
397	۹-Miyake Y, Yagasaki K, Horiguchi M, Kawase Y, Kanda T. Congenital stationary
341	night blindness with negative electroretinogram. A new classification. Arch
٣٩٩	Ophthalmol $1977; 1.5: 1.17-1.7.$

٤ • •	۲۰-Bech-Hansen NT, Naylor MJ, Maybaum TA, Pearce WG, Koop B, Fishman GA,
٤٠١	et al. Loss-of-function mutations in a calcium channel alpha'-subunit gene in
٤٠٢	Xp11.17 cause incomplete X-linked congenital stationary night blindness. Nat
٤٠٣	Genet $199A; 19: 15 = 17V$.
٤ • ٤	Y)-Miyake Y. Cone dystrophy. In: Miyake Y,ed. Electrodiagnosis of retinal diseases.
٤.0	Tokyo: Springer-Verlag; ۲۰۰٦:۱۲۳-۱۳۰.
٤٠٦	۲۲-Miyake Y. Rod monochromacy. In: Miyake Y,ed. Electrodiagnosis of retinal
٤٠٧	diseases. Tokyo: Springer-Verlag; ۲۰۰٦:۱۳٦-۱۳٧.
٤٠٨	۲۳-KoizumiH, Maguire JI, SpaideRF. Spectral domain optical coherence
٤٠٩	tomographic findings of occult macular dystrophy. Ophthalmic Surg Lasers
٤١.	Imaging $7 \cdot 9; \xi \cdot (7): 177-175$.
٤١١	۲٤-KimYG, Baek SH, Moon SW, Lee HK, Kim US. Analysis of spectral domain
٤١٢	optical coherence tomography findings in occult macular dystrophy .Acta
٤١٣	$Ophthalmol^{+}, 1, 3, 9, (1): 0, 5, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
٤١٤	۲۰-Nakamura N, Tsunoda K, Mizuno Y, Usui T, Hatase T, Ueno S, et al. Clinical
٤١٥	stages of occult macular dystrophy based on optical coherence tomographic
٤١٦	findings.Invest Ophthalmol Vis Sci ۲۰۱۹; ٦٠: ٤٦٩١-٤٧٠.
٤١٧	۲٦- Ahn SJ, AhnJ, Park KH, Woo SJ. Multimodal imaging of occult macular
٤١٨	dystrophy.JAMA Ophthalmol ^ү • ۱ ^۳ ; ^۱ ^۳)(^ү): ^{۸۸} •- ^{۸۹} •.
٤١٩	
٤٢.	